1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326
//! Execution scheduling
//!
//! See Also
//! [sched.h](https://pubs.opengroup.org/onlinepubs/9699919799/basedefs/sched.h.html)
use crate::{Errno, Result};
#[cfg(linux_android)]
pub use self::sched_linux_like::*;
#[cfg(linux_android)]
mod sched_linux_like {
use crate::errno::Errno;
use crate::unistd::Pid;
use crate::Result;
use libc::{self, c_int, c_void};
use std::mem;
use std::option::Option;
use std::os::unix::io::{AsFd, AsRawFd};
// For some functions taking with a parameter of type CloneFlags,
// only a subset of these flags have an effect.
libc_bitflags! {
/// Options for use with [`clone`]
pub struct CloneFlags: c_int {
/// The calling process and the child process run in the same
/// memory space.
CLONE_VM;
/// The caller and the child process share the same filesystem
/// information.
CLONE_FS;
/// The calling process and the child process share the same file
/// descriptor table.
CLONE_FILES;
/// The calling process and the child process share the same table
/// of signal handlers.
CLONE_SIGHAND;
/// If the calling process is being traced, then trace the child
/// also.
CLONE_PTRACE;
/// The execution of the calling process is suspended until the
/// child releases its virtual memory resources via a call to
/// execve(2) or _exit(2) (as with vfork(2)).
CLONE_VFORK;
/// The parent of the new child (as returned by getppid(2))
/// will be the same as that of the calling process.
CLONE_PARENT;
/// The child is placed in the same thread group as the calling
/// process.
CLONE_THREAD;
/// The cloned child is started in a new mount namespace.
CLONE_NEWNS;
/// The child and the calling process share a single list of System
/// V semaphore adjustment values
CLONE_SYSVSEM;
// Not supported by Nix due to lack of varargs support in Rust FFI
// CLONE_SETTLS;
// Not supported by Nix due to lack of varargs support in Rust FFI
// CLONE_PARENT_SETTID;
// Not supported by Nix due to lack of varargs support in Rust FFI
// CLONE_CHILD_CLEARTID;
/// Unused since Linux 2.6.2
#[deprecated(since = "0.23.0", note = "Deprecated by Linux 2.6.2")]
CLONE_DETACHED;
/// A tracing process cannot force `CLONE_PTRACE` on this child
/// process.
CLONE_UNTRACED;
// Not supported by Nix due to lack of varargs support in Rust FFI
// CLONE_CHILD_SETTID;
/// Create the process in a new cgroup namespace.
CLONE_NEWCGROUP;
/// Create the process in a new UTS namespace.
CLONE_NEWUTS;
/// Create the process in a new IPC namespace.
CLONE_NEWIPC;
/// Create the process in a new user namespace.
CLONE_NEWUSER;
/// Create the process in a new PID namespace.
CLONE_NEWPID;
/// Create the process in a new network namespace.
CLONE_NEWNET;
/// The new process shares an I/O context with the calling process.
CLONE_IO;
}
}
/// Type for the function executed by [`clone`].
pub type CloneCb<'a> = Box<dyn FnMut() -> isize + 'a>;
/// `clone` create a child process
/// ([`clone(2)`](https://man7.org/linux/man-pages/man2/clone.2.html))
///
/// `stack` is a reference to an array which will hold the stack of the new
/// process. Unlike when calling `clone(2)` from C, the provided stack
/// address need not be the highest address of the region. Nix will take
/// care of that requirement. The user only needs to provide a reference to
/// a normally allocated buffer.
///
/// # Safety
///
/// Because `clone` creates a child process with its stack located in
/// `stack` without specifying the size of the stack, special care must be
/// taken to ensure that the child process does not overflow the provided
/// stack space.
///
/// See [`fork`](crate::unistd::fork) for additional safety concerns related
/// to executing child processes.
pub unsafe fn clone(
mut cb: CloneCb,
stack: &mut [u8],
flags: CloneFlags,
signal: Option<c_int>,
) -> Result<Pid> {
extern "C" fn callback(data: *mut CloneCb) -> c_int {
let cb: &mut CloneCb = unsafe { &mut *data };
(*cb)() as c_int
}
let combined = flags.bits() | signal.unwrap_or(0);
let res = unsafe {
let ptr = stack.as_mut_ptr().add(stack.len());
let ptr_aligned = ptr.sub(ptr as usize % 16);
libc::clone(
mem::transmute::<
extern "C" fn(*mut Box<dyn FnMut() -> isize>) -> i32,
extern "C" fn(*mut libc::c_void) -> i32,
>(
callback
as extern "C" fn(*mut Box<dyn FnMut() -> isize>) -> i32,
),
ptr_aligned as *mut c_void,
combined,
&mut cb as *mut _ as *mut c_void,
)
};
Errno::result(res).map(Pid::from_raw)
}
/// disassociate parts of the process execution context
///
/// See also [unshare(2)](https://man7.org/linux/man-pages/man2/unshare.2.html)
pub fn unshare(flags: CloneFlags) -> Result<()> {
let res = unsafe { libc::unshare(flags.bits()) };
Errno::result(res).map(drop)
}
/// reassociate thread with a namespace
///
/// See also [setns(2)](https://man7.org/linux/man-pages/man2/setns.2.html)
pub fn setns<Fd: AsFd>(fd: Fd, nstype: CloneFlags) -> Result<()> {
let res = unsafe { libc::setns(fd.as_fd().as_raw_fd(), nstype.bits()) };
Errno::result(res).map(drop)
}
}
#[cfg(any(linux_android, freebsdlike))]
pub use self::sched_affinity::*;
#[cfg(any(linux_android, freebsdlike))]
mod sched_affinity {
use crate::errno::Errno;
use crate::unistd::Pid;
use crate::Result;
use std::mem;
/// CpuSet represent a bit-mask of CPUs.
/// CpuSets are used by sched_setaffinity and
/// sched_getaffinity for example.
///
/// This is a wrapper around `libc::cpu_set_t`.
#[repr(transparent)]
#[derive(Clone, Copy, Debug, Eq, Hash, PartialEq)]
pub struct CpuSet {
#[cfg(not(target_os = "freebsd"))]
cpu_set: libc::cpu_set_t,
#[cfg(target_os = "freebsd")]
cpu_set: libc::cpuset_t,
}
impl CpuSet {
/// Create a new and empty CpuSet.
pub fn new() -> CpuSet {
CpuSet {
cpu_set: unsafe { mem::zeroed() },
}
}
/// Test to see if a CPU is in the CpuSet.
/// `field` is the CPU id to test
pub fn is_set(&self, field: usize) -> Result<bool> {
if field >= CpuSet::count() {
Err(Errno::EINVAL)
} else {
Ok(unsafe { libc::CPU_ISSET(field, &self.cpu_set) })
}
}
/// Add a CPU to CpuSet.
/// `field` is the CPU id to add
pub fn set(&mut self, field: usize) -> Result<()> {
if field >= CpuSet::count() {
Err(Errno::EINVAL)
} else {
unsafe {
libc::CPU_SET(field, &mut self.cpu_set);
}
Ok(())
}
}
/// Remove a CPU from CpuSet.
/// `field` is the CPU id to remove
pub fn unset(&mut self, field: usize) -> Result<()> {
if field >= CpuSet::count() {
Err(Errno::EINVAL)
} else {
unsafe {
libc::CPU_CLR(field, &mut self.cpu_set);
}
Ok(())
}
}
/// Return the maximum number of CPU in CpuSet
pub const fn count() -> usize {
#[cfg(not(target_os = "freebsd"))]
let bytes = mem::size_of::<libc::cpu_set_t>();
#[cfg(target_os = "freebsd")]
let bytes = mem::size_of::<libc::cpuset_t>();
8 * bytes
}
}
impl Default for CpuSet {
fn default() -> Self {
Self::new()
}
}
/// `sched_setaffinity` set a thread's CPU affinity mask
/// ([`sched_setaffinity(2)`](https://man7.org/linux/man-pages/man2/sched_setaffinity.2.html))
///
/// `pid` is the thread ID to update.
/// If pid is zero, then the calling thread is updated.
///
/// The `cpuset` argument specifies the set of CPUs on which the thread
/// will be eligible to run.
///
/// # Example
///
/// Binding the current thread to CPU 0 can be done as follows:
///
/// ```rust,no_run
/// use nix::sched::{CpuSet, sched_setaffinity};
/// use nix::unistd::Pid;
///
/// let mut cpu_set = CpuSet::new();
/// cpu_set.set(0).unwrap();
/// sched_setaffinity(Pid::from_raw(0), &cpu_set).unwrap();
/// ```
pub fn sched_setaffinity(pid: Pid, cpuset: &CpuSet) -> Result<()> {
let res = unsafe {
libc::sched_setaffinity(
pid.into(),
mem::size_of::<CpuSet>() as libc::size_t,
&cpuset.cpu_set,
)
};
Errno::result(res).map(drop)
}
/// `sched_getaffinity` get a thread's CPU affinity mask
/// ([`sched_getaffinity(2)`](https://man7.org/linux/man-pages/man2/sched_getaffinity.2.html))
///
/// `pid` is the thread ID to check.
/// If pid is zero, then the calling thread is checked.
///
/// Returned `cpuset` is the set of CPUs on which the thread
/// is eligible to run.
///
/// # Example
///
/// Checking if the current thread can run on CPU 0 can be done as follows:
///
/// ```rust,no_run
/// use nix::sched::sched_getaffinity;
/// use nix::unistd::Pid;
///
/// let cpu_set = sched_getaffinity(Pid::from_raw(0)).unwrap();
/// if cpu_set.is_set(0).unwrap() {
/// println!("Current thread can run on CPU 0");
/// }
/// ```
pub fn sched_getaffinity(pid: Pid) -> Result<CpuSet> {
let mut cpuset = CpuSet::new();
let res = unsafe {
libc::sched_getaffinity(
pid.into(),
mem::size_of::<CpuSet>() as libc::size_t,
&mut cpuset.cpu_set,
)
};
Errno::result(res).and(Ok(cpuset))
}
/// Determines the CPU on which the calling thread is running.
pub fn sched_getcpu() -> Result<usize> {
let res = unsafe { libc::sched_getcpu() };
Errno::result(res).map(|int| int as usize)
}
}
/// Explicitly yield the processor to other threads.
///
/// [Further reading](https://pubs.opengroup.org/onlinepubs/9699919799/functions/sched_yield.html)
pub fn sched_yield() -> Result<()> {
let res = unsafe { libc::sched_yield() };
Errno::result(res).map(drop)
}