
Deadlock

Godmar Back

Virginia Tech

October 30, 2024

Godmar Back Deadlock 1/14 1 / 14



Deadlock

General Definition
A condition in which one or more related threads are blocked waiting for an event
that will never occur because the blocked threads would be the ones to cause it.
Resource version: ... threads are blocked waiting for resources that will never be
granted because they are held by threads currently requesting resources.

Figure 1: Source: Stallings

Can be related to resource contention or to lack of
signaling or communication.

Typical for deadlock is that
(a) threads cannot make forward progress
(b) threads cannot easily back out

Different from a system being merely idle in which
all threads are blocked, but outside events will
eventually unblock them

Godmar Back Deadlock 2/14 2 / 14



Resource Deadlock Detection

Will focus on deadlocks involving reusable
resources (e.g., mutexes)

Reliable after-the-fact deadlock detection requires
access to resource allocation graph:

Nodes are either processes or resources with 2 types of
edges
From resource Ri to process Pk : process Pk holds
resource Ri

From process Pk to resource Ri : process Pk is trying to
acquire resource Ri

In practice, finding this graph can be difficult,
though some debuggers provide it, e.g. Windows
[URL]

Figure 2: Resource Allocation
Graph

Godmar Back Deadlock 3/14 3 / 14

https://docs.microsoft.com/en-us/windows-hardware/drivers/debugger/-deadlock


Resource Deadlock

Coffman et al [1] identified the following four conditions for resource-related
deadlock to occur

1 Exclusive Access: a resource is held exclusively by one thread

2 Hold and Wait: threads hold one resource while waiting to acquire another

3 No preemption: access to resources cannot be revoked, not even temporarily

4 Circular Wait: there is a cycle in the resource allocation graph

Observation
Conditions (1) to (3) are conditions we fundamentally require: e.g.
locks provide exclusive, non-preemptible access to something, and it
may be required to acquire multiple of them in sequence.

Godmar Back Deadlock 4/14 4 / 14



Strategies for Dealing with Deadlock

Deadlock Recovery, e.g. after the fact

Deadlock Prevention, e.g. remove one of the necessary conditions

Deadlock Avoidance, e.g. adopt a strategy if none of the necessary conditions
can be removed

Godmar Back Deadlock 5/14 5 / 14



Deadlock Recovery

In order of increasing severity
Preempt access to resource (if possible)
Back processes up: expensive, requires checkpointing and/or transaction
mechanisms
Kill involved processes until deadlock is resolved
Kill all threads/processes involved
Reboot

Godmar Back Deadlock 6/14 6 / 14



Side Note on Safe Termination

Killing threads or processes (as part of deadlock recovery, or otherwise) is
generally tricky

Must avoid a situation where killed thread is in the middle of manipulating state
that is accessed later

E.g., kill -9 kills an entire process, including all its state. Kernel ensures that no kernel state
is endangered; but provides no guarantees about the state of resources such as files
Killing individual threads (i.e., via pthread cancel() is not recommended/tricky to get
right)

Godmar Back Deadlock 7/14 7 / 14



Deadlock Prevention

Idea
Deadlock cannot occur if one of the necessary conditions is removed

(C1): (do not require) Exclusive Access:
if resources can be shared or duplicated, do so

(C2): (avoid) Hold and Wait strategies:
Request all resources at once in a single operation – may be difficult to know in a modular
system
Exploit try acquire operation and drop resources already acquired upon failure, then retry
– can be inefficient if resources are contended

Godmar Back Deadlock 8/14 8 / 14



Deadlock Prevention (cont’d)

Idea
Deadlock cannot occur if one of the necessary conditions is removed

(C3): (allow for) Preemption:
Preempt access to resource - difficult to write code that is robust in the presence of such
preemption
Virtualize resource (save and restore)

(C4): (avoid) Circular Wait:
Create a partial order of all resources that may be held simultaneously - e.g., by taking their
addresses; example: C++17 std::scoped lock
Real-world systems often document locking order

Godmar Back Deadlock 9/14 9 / 14

https://en.cppreference.com/w/cpp/thread/scoped_lock


Deadlock Avoidance

If none of the necessary 4 conditions can be removed, can consider a strategy
whether to allow or deny requested accesses to resources

E.g. Banker’s algorithm
Avoids “unsafe” states that might lead to deadlock
Requires knowledge of future resource demands
Requires capturing of all dependencies

By and large, mostly theoretical and not used in practice

Godmar Back Deadlock 10/14 10 / 14



Practical Strategies

Minimize likelihood of deadlock by applying prevention strategies wherever
possible:

avoid unnecessarily fine-grained locking (share a lock)
define locking order if not possible
use tools that flag when locking order is violated
have clear signaling strategies

Allow for deadlock recovery
Design system to minimize the amount of work that is lost or must be repeated if deadlock
recovery necessitates killing of processes

Godmar Back Deadlock 11/14 11 / 14



Deadlock vs. Starvation

Starvation
Apparent lack of progress that could be fixed with a proper scheduling strategy:

Strict priority scheduler might starve lower priority thread if higher priority
threads are always READY

Reader-writer locks may assign lock to only readers, starving writers

Deadlock
There is no scheduling policy that would allow forward progress

See Levine [2] for an attempt to extend the definition of deadlock to other lack of
progress states

Godmar Back Deadlock 12/14 12 / 14



Conclusion

Deadlock is a state where a set of threads is blocked waiting for a resource or
event that could be produced only by a thread in the set

For reusable resources, can be analyzed with a resource allocation graph

Employ strategies for
Deadlock Detection & Recovery
Deadlock Prevention

In general, risk of deadlock increases with finer granularity of locking: scalability
vs robustness trade-off

Godmar Back Deadlock 13/14 13 / 14



References

[1] E. G. Coffman, M. Elphick, and A. Shoshani.
System deadlocks.
ACM Comput. Surv., 3(2):67–78, June 1971.

[2] Gertrude Neuman Levine.
Defining deadlock.
SIGOPS Oper. Syst. Rev., 37(1):54–64, January 2003.

Godmar Back Deadlock 14/14 14 / 14


