
HTTP

Godmar Back

Virginia Tech

November 22, 2024

Godmar Back HTTP 1/20 1 / 20

Outline

Goal: obtain working knowledge of the
Hypertext Transfer Protocol HTTP, the
primary protocol underlying the world-wide
web as well as modern web-based applications

Started in 1991 with what’s now referred to a
HTTP 0.9 by Tim Berners-Lee at CERN

HTTP/1.0 and HTTP/1.1 in 1996, 1997
(updated by RFC 7230-7235 and in 2022 by
RFC 9110-9112)

HTTP/2.0 (2015, RFC 7540) and HTTP/3.0
are mainly transport/security enhancements
that preserve semantics

Figure 1: Documents connected by
hyperlinks. Source: WikiPedia

Godmar Back HTTP 2/20 2 / 20

https://tools.ietf.org/html/rfc7540
https://commons.wikimedia.org/wiki/File:Sistema_hipertextual.jpg

HTTP - Basics

Request/response protocol where user agents request arbitrary objects from a
server

Very simple syntax; requests and responses use a similar format

Request: request an arbitrary object/resource denoted by a path derived from a
uniform resource locator, or URL

Few request types (“methods” GET, POST, PUT, DELETE, HEAD, OPTIONS, PATCH)

Response: returns objects (comprised of octets/bytes), along with some
metadata

anything from HTML, text, images, video, audio
metadata to interpret it (content type + encoding)
also supports streaming of larger objects

Godmar Back HTTP 3/20 3 / 20

Uniform Resource Locators - URLs

Structure
userinfo host port

http://john.doe:password@www.example.com:123/forum/questions/?tag=networking&order=newest#top

scheme authority path query fragment

Common schemes: http, https, file

Default port depends on scheme

Query string is a sequence of key=value pairs

Godmar Back HTTP 4/20 4 / 20

HTTP Transaction Example 1

https://duckduckgo.com/html?q=http

GET /html?q=http HTTP/1.1

Host: duckduckgo.com

User-Agent: curl/7.58.0

Accept: */*

HTTP/1.1 200 OK

Server: nginx

Date: Sun, 26 Apr 2020 01:02:56 GMT

Content-Type: text/html; charset=UTF-8

Transfer-Encoding: chunked

Expires: Sun, 26 Apr 2020 01:02:57 GMT

Cache-Control: max-age=1

X-DuckDuckGo-Locale: en_US

Godmar Back HTTP 5/20 5 / 20

HTTP Transaction Example 1

https://duckduckgo.com/html?q=http

GET /html?q=http HTTP/1.1 <- method path?query version

Host: duckduckgo.com <- domain (in case of virtual hosts)

User-Agent: curl/7.58.0 <- User agent is curl

Accept: */* <- Accept any content type

HTTP/1.1 200 OK <- HTTP version + status + message

Server: nginx <- various headers

Date: Sun, 26 Apr 2020 01:02:56 GMT

Content-Type: text/html; charset=UTF-8 <- body is utf8-encoded HTML

Transfer-Encoding: chunked <- body will be sent in chunks

Expires: Sun, 26 Apr 2020 01:02:57 GMT

Cache-Control: max-age=1

X-DuckDuckGo-Locale: en_US

Godmar Back HTTP 6/20 6 / 20

HTTP Transaction Example 2

http://optiplex:10000/api/login

POST /api/login HTTP/1.1

Host: optiplex:10000

User-Agent: curl/7.58.0

Accept: */*

Content-Type: application/json

Content-Length: 45

{"username":"user0","password":"thepassword"}

HTTP/1.1 200 OK

Server: CS3214-Personal-Server

Set-Cookie: auth_token=eyJhbGc ... 81Phms; Path=/

Content-Type: application/json

Content-Length: 49

{"exp":1588010897,"iat":1587924497,"sub":"user0"}

Godmar Back HTTP 7/20 7 / 20

HTTP Transaction Example 2

http://optiplex:10000/api/login

POST /api/login HTTP/1.1

Host: optiplex:10000

User-Agent: curl/7.58.0

Accept: */*

Content-Type: application/json <- request body type

Content-Length: 45 <- request body length

{"username":"user0","password":"thepassword"}

HTTP/1.1 200 OK

Server: CS3214-Personal-Server

Set-Cookie: auth_token=eyJhbGc ... 81Phms; Path=/

Content-Type: application/json

Content-Length: 49

{"exp":1588010897,"iat":1587924497,"sub":"user0"}

Godmar Back HTTP 8/20 8 / 20

HTTP Transaction Example 3

http://optiplex:10000/private/secret.txt

GET /private/secret.txt HTTP/1.1

Host: optiplex:10000

User-Agent: curl/7.58.0

Accept: */*

Cookie: auth_token=eyJhb fv24M9Ijl1ePpM81Phms

HTTP/1.1 200 OK

Server: CS3214-Personal-Server

Content-Length: 12

Content-Type: text/plain

Secret File.

Godmar Back HTTP 9/20 9 / 20

HTTP Transaction Example 4

http://optiplex:10000/private/secret.txt

GET /private/secret.txt HTTP/1.1

Host: optiplex:10000

User-Agent: curl/7.58.0

Accept: */*

HTTP/1.1 403 Permission Denied

Server: CS3214-Personal-Server

Content-Length: 18

Permission denied.

HTTP is a stateless protocol. Servers do not maintain state across requests as part of the protocol.
Clients must present information that allows servers to recognize them as part of an earlier
interaction or ongoing session. Usually cookies or bearer tokens are used.

Godmar Back HTTP 10/20 10 / 20

HTTP Request Methods

GET Request transfer of target resource in selected representation

HEAD Like GET, except only metadata, no body

POST Process data sent in request, possibly creating a new resource

PUT Update target resource

DELETE Delete target resource

CONNECT Create a tunnel to target resource

OPTIONS Inquire about server options or policies

TRACE, PATCH ...

Godmar Back HTTP 11/20 11 / 20

Common HTTP Response Status Codes

200 OK Success

301 Moved Permanently Follow direction in Location:

304 Not Modified Resource hasn’t changed, use cached copy

400 Bad Request Client send ill-formed request

401 Unauthorized Unauthenticated

403 Forbidden Authenticated, but unauthorized

404 Not Found Resource doesn’t exist

418 I’m a Teapot Attempt to brew coffee in a teapot [1]

500 Internal Server Error Something went wrong that shouldn’t have

502 Bad Gateway Can’t connect to upstream

Godmar Back HTTP 12/20 12 / 20

HTTP and the Transport Layer

Fetching a typical webpage involves multiple HTTP transactions to (often)
different servers to retrieve JavaScript, style sheets, fonts, images, etc. etc.

As of 2020, HTTP is most often run over TCP, directly or indirectly (via
Transport Layer Security/TLS)

As such, transport layer properties have strong influence on HTTP performance

Let’s look at how as we trace through the versions of HTTP

Godmar Back HTTP 13/20 13 / 20

HTTP 1.0

HTTP 1.0 created a new TCP
connection for each resource it
requested

The request can be sent with the 3rd
leg of the handshake

Time needed: 2 × RTT + Tt where
RTT is the round-trip time for a small
packet and Tt is the transmit time for
the object

Inefficient, especially for small
resources (relative to bandwidth) and
high propagation delay (e.g. WAN)
connections

Client Server

TCP create connection

acknowledge, exchange ISN

request resource

transmit resource

RTT

Figure 2: HTTP 1.0

Godmar Back HTTP 14/20 14 / 20

HTTP 1.1 - Persistent Connections

Reuses one connection for multiple transfers

Common scenario:
User fetches say www.vt.edu/index.html, finds
numerous references to objects on multiple servers
www.vt.edu, www.assets.cms.vt.edu
what’s the fastest way to fetch them?

Q1: How many connections should be
established to each server?

Servers want this number to be low (protection
from overload). Networks want this number to be
low (fairness, congestion control).

Q2: Which requests should be sent over which
connection and when?

Clients want to use the connection that is served
quickest by a server

Client Server

TCP create connection

acknowledge, exchange ISN

request resource 1

transmit resource

RTT

request resource 2

transmit resource

request resource 3

transmit resource

Figure 3: HTTP 1.1

Godmar Back HTTP 15/20 15 / 20

HTTP 1.1 Pipelining

Sending requests for next resources as soon
as known can, in theory, allow a server to
send resources back-to-back

Leads to HOL (head of line) blocking:
resource 3 cannot be sent until after
resource 2 is ready to be sent

Plus, servers aren’t implemented to fetch
resources in parallel on the same connection
– though servers can almost always handle
multiple connections in parallel

Result: clients use multiple connections and
did not use pipelining. How many?

RFC 2616: 2 per server.
RFC 7230: Clients should be “conservative when
opening multiple connections.”

Client Server

TCP create connection

acknowledge, exchange ISN

request resource 1

transmit resource

RTT

request resource 2 + 3

transmit resource 2 + 3

Figure 4: HTTP 1.1 with pipelining

Godmar Back HTTP 16/20 16 / 20

HTTP 2.0

No longer first-come, first-serve: client can
specify transmission order preference

Server can send objects back in any order,
in fact, they can be sent divided into frames
(parts) which can be mixed and are
reassembled

Server push: server may sent objects before
they are requested1

Header compression: no longer ASCII

Goal: reduce incentive for clients to open
multiple connections

Still, packet loss on the underlying TCP
transport can temporarily stall connection

Client Server

TCP create connection

acknowledge, exchange ISN

request resource 1

transmit resource

RTT

request resource 2 + 3

transmit resource 2 + 3 in

frames

Figure 5: HTTP 2.0

1Interestingly, seems to not work out: Chrome removed support for it as of 2022

Godmar Back HTTP 17/20 17 / 20

https://developer.chrome.com/blog/removing-push/

Transport Layer Security

Recent years have seen a trend to use
https - HTTP over a secure transport, e.g.
RFC 7258

Can use any of a family of TLS protocols
Fully transparent to HTTP layer
Generally, provides (a) encryption and (b) server
authentication via certificates and a public key
infrastructure

From a performance perspective, we now
have an additional TLS handshake following
the TCP handshake in which suitable TLS
protocols are negotiated

Client Server

TCP create connection

acknowledge, exchange ISN

request resource

transmit resource

RTT

TLS handshake to exchange
crypto state

RTT

Figure 6: HTTP over TLS

Godmar Back HTTP 18/20 18 / 20

https://tools.ietf.org/html/rfc7258

HTTP/3 over QUIC: Quick UDP Internet Connections

QUIC: Proposal by Google:
https://www.chromium.org/quic

HTTP/3 uses QUIC

Uses UDP instead of TCP to avoid blocking entire
stream on packet loss

Reimplements reliability on a per-stream basis
Reimplements congestion control
Combines connection establishment handshakes and crypto
handshakes (0 RTT if crypto state can be reused)
Forward error correction and connection migration

Already widely used in mobile video

Figure 7: QUIC Logo

Godmar Back HTTP 19/20 19 / 20

https://www.chromium.org/quic

References

[1] Larry M Masinter.
Hyper Text Coffee Pot Control Protocol (HTCPCP/1.0).
RFC 2324, April 1998.

Godmar Back HTTP 20/20 20 / 20

