
Performance Considerations in Multi-Threaded Programs

Godmar Back

Virginia Tech

October 30, 2024

Godmar Back Performance in Multi-Threaded Programs 1/9 1 / 9



Performance Considerations

Upfront Note
Correctness cannot be traded for performance. No one cares about the performance
of code that contains data races, atomicity violations, ordering violations, or is prone
to deadlocks.

That said, let’s examine the cost of locking in particular

Indirect cost (resulting in loss of performance due to the use of locking)
Simulated on following slides 5 CPU-bound processes contending for L locks, holding each
lock for duration D, then running for duration U without lock. Thread chooses lock
randomly.
Lightgreen are threads running without holding locks
Other colors are threads holding locks

Direct cost (involved in actions the system had to take to implement it)

Godmar Back Performance in Multi-Threaded Programs 2/9 2 / 9



Indirect Cost: Loss of Parallelism Due To Single Lock

Figure 1: Fixed:
U=2/D=2/L=1/40.8%

Figure 2: Fixed:
U=18/D=2/L=1/96%

Figure 3: Poisson:
U=2/D=2/L=1/41.6%

Figure 4: Poisson
U=18/D=2/L=1/94.4%

Godmar Back Performance in Multi-Threaded Programs 3/9 3 / 9



Indirect Cost: Loss of Parallelism with 2 Locks

Figure 5: Fixed:
U=2/D=2/L=2/65.2%

Figure 6: Fixed:
U=18/D=2/L=2/96%

Figure 7: Poisson:
U=2/D=2/L=2/72.2%

Figure 8: Poisson
U=18/D=2/L=2/99.4%

Godmar Back Performance in Multi-Threaded Programs 4/9 4 / 9



Indirect Cost: Loss of Parallelism with 4 locks

Figure 9: Fixed:
U=2/D=2/L=4/89.6%

Figure 10: Fixed:
U=18/D=2/L=4/98%

Figure 11: Poisson:
U=2/D=2/L=4/79.2%

Figure 12: Poisson
U=18/D=2/L=4/99.4%

Godmar Back Performance in Multi-Threaded Programs 5/9 5 / 9



Indirect Cost: Loss of Parallelism

Serialization due to locks diminishes CPU utilization and increases an individual
task’s latency

For parallel, mostly CPU-bound applications this translates directly into loss of speedup
Particularly if locks are contended (situation where threads are blocked on a lock arises
frequently)
Particularly/assuming if there’s nothing else to run during times when threads are blocked

This serialization effect would be exacerbated if blocked threads held locks (e.g.,
I/O, sleep, sem wait, pthread join?)

Rule: Critical sections should not call any functions that may block, or else the
critical section may become inaccessible

pthread_mutex_lock(&shutdownLock);

pthread_mutex_lock(&infoLock);

while (!moreInformation)

pthread_cond_wait(&moreInfo, &infoLock);

pthread_mutex_unlock(&infoLock);

pthread_mutex_unlock(&shutdownLock);

pthread_mutex_lock(&lock);

read(fd, buf, sizeof buf);

pthread_mutex_unlock(&lock);

Godmar Back Performance in Multi-Threaded Programs 6/9 6 / 9



Solution: Breaking Up Locks

Cautionary side note: several large software systems were either never
parallelized or started with a “big lock” approach: the Linux kernel, Python’s
GIL, gtk GUI lock

Idea: instead of having lock L protect data (A,B,C ) introduce locks LA, LB , LC
to protect A, B, and C , respectively.

Thus, updates to A will not prevent simultaneous updates to B

This introduces 3 risks
1 Higher risk of atomicity violations: if A and B must be updated in tandem (atomically) -

say update to B is dependent on A having a value, both locks must be held. Always
holding both locks negates purpose of having 2 locks; not holding them both where needed
leads to atomicity violations

2 Higher risk of deadlocks: if there are situations where both locks must be held, a locking
order must be established to avoid deadlocks

3 More frequent calls to lock/unlock translates to increased direct cost (locking overhead)

Godmar Back Performance in Multi-Threaded Programs 7/9 7 / 9



Direct Cost of Locking

What happens under the hood in a call to pthread mutex lock()?
Fast path: an atomic instruction tries to acquire the lock (if available) without causing a
mode switch (e.g. cmpxchg %rax, (%rbx)) - in memory flag that indicates if lock is
available
For fast path numbers, see Jeff Dean/Peter Norvig/Colin Scott Numbers Every
Programmer Should Know: 17× L1 reference, 4× L2 reference, 1

6× main memory reference
(17ns as of 2010’s)
Slow path: if atomic instruction indicates that lock is already held, make system call
(futex wait) and inform kernel that thread should block. Then, context switch to other
ready thread (if any)

... pthread mutex unlock()?
Fast path: just place lock into unlocked state
Slow path (someone is waiting for the lock): make system call (futex wakeup) and inform
kernel to wake up any waiting thread(s). These threads are unblocked (made ready), placed
into ready queue, and eventually scheduled - another context switch

Both mode and context switches can be costly (e.g. pipeline stalls, cache
pollution)

Godmar Back Performance in Multi-Threaded Programs 8/9 8 / 9

https://colin-scott.github.io/personal_website/research/interactive_latency.html
https://colin-scott.github.io/personal_website/research/interactive_latency.html


Conclusion

Optimizing locking is difficult

Correctness is paramount

Performance impact can be difficult to predict

Strategies to reduce serialization may increase locking overhead

General approach should be start conservatively with coarse-grained locking
strategies, and move to finer-grained locking as part of an iterative optimization
process

Godmar Back Performance in Multi-Threaded Programs 9/9 9 / 9


