Processes (Part I)

Godmar Back

Virginia Tech

August 29, 2024

\/a

VIRGINIA TECH

Godmar Back Processes Part | 1/9 1/9

Processes

Processes. We consider that the system hardware com-
prises one or more processors, which we can identify as
being distinet from the main memory, the file storage de-

Definition of Process

An |nsta nce Of a program that |S belng eXECUted vices and the input/output devices. Each processor is
. . capable of executing algorithms that are specified by se-
(a ka a running Insta nce) quences of instruetions. A process is a locus of control

within an instruction sequence. That is, a process is that
abstract entity which moves through the instructions of a

OS prOVides, for each process, procedure as the procedure is executed by a processor.

o Loglcal flows of control: Figure 1: Dennis and Van Horn:

o 1 flow for single-threaded programs Programming Semantics for
o multiple flows for multi-threaded programs Multiprogrammed Computations,
@ Private, protected address space 1966 [2]

@ Abstracted resources (file descriptors)

These facilities abstract CPU, memory, and
devices, respectively.

\/a

VIRGINIA TECH

Godmar Back Processes Part | 2/9 2/9

Context Switching

@ Historical motivation for processes was introduction of multi-programming:

@ Load multiple processes into memory, and switch to another process if current process is
(momentarily) blocked, perhaps waiting for user input

o This required protection and isolation between these processes, implemented by a privileged
kernel: dual-mode operation.

@ Time-sharing: a policy that switches to another process periodically to make
sure all processes make progress

@ The act of switching between processes is called a context switch

@ “Context” here means the state of the running program, which includes the
current program text, the location within the program text (PC/IP), and all
associated state: variables (global, heap, stack, CPU registers)

@ Because context switching is typically managed by the kernel, it interacts with

mode switching \V/7ak

VIRGINIA TECH

Godmar Back Processes Part | 3/9 3/9

Dual-Mode Operation

To enable the implementation of switching between separate contexts, processors
provide the ability to operate in different “modes,” or privilege levels. At a minimum,
there are 2 fundamental modes:
@ “kernel mode”: aka system mode, supervisor or monitor mode
@ On Intel: PLO, or Privilege Level 0 (aka Ring 0)
@ ‘“user mode”: non-privileged mode
@ On Intel: PL3, or Privilege Level 3 (aka Ring 3)

@ These modes are maintained by the CPU (think of a bit)

@ Rule 1: instructions designated as “privileged” instructions will be executed only
if in kernel mode; else they cause a fault

@ Rule 2: transition from/to kernel mode is carefully controlled
@ Example: HLT instruction

\/a

VIRGINIA TECH

Godmar Back Processes Part | 4/9 4/9

https://www.felixcloutier.com/x86/hlt

Mode Switching

Two directions to consider

@ User — Kernel mode

e Transitions to known, protected entry point in kernel code
e May occur for reasons external or internal to CPU
o External (aka hardware) interrupt
@ timer/clock chip, 1/O device, network card, keyboard, mouse
@ asynchronous: unrelated to what the currently executing program does
o Internal interrupt (aka software interrupt, trap, or exception)
@ can be intended (“trap”): for system call (process wants to enter kernel to obtain services)
@ or unintended (usually): (“fault/exception”) (division by zero, attempt to execute a privileged
instruction while in user mode, memory access violation, invalid instruction, alignment error, etc.)
@ synchronous: caused by what the current program does

@ Kernel — User mode

e via special privileged instruction (Intel: iret)
@ represents either a return from interrupt or careful action to resume user program execution

Results in Limited Direct Execution [1] g

Godmar Back Processes Part | 5/9 5/9

http://pages.cs.wisc.edu/~remzi/OSTEP/cpu-mechanisms.pdf

Context Switch Scenarios

See Examples

\/a

VIRGINIA TECH

Godmar Back Processes Part | 6/9 6/9

https://docs.google.com/presentation/d/1tGoPF56SJXRjVjz1ivRY77UKvwlMQ-521cdRy9IQOOo/edit?usp=sharing

Context vs Mode Switches, Summary

@ Mode switch guarantees that kernel gains control when needed

e To react to external events
@ To handle error situations
e Entry into kernel is controlled

@ Not all mode switches lead to context switches

o Kernel decides if/when — subject to process state transitions and scheduling
policies

@ Mode switch does not change the identity of current process/thread

\/a

VIRGINIA TECH

Godmar Back Processes Part | 7/9

7/9

Exceptions, Bottom-Up View

User Process oS
event —— current exception
next exception processing
by exception handler
exception
return (optional)

Figure 2: Figure 9.1 in CSApp3e book, “Anatomy of an Exception”

The book details exceptional control flow from the perspective of a process /s

experiencing the exception that leads to a user — kernel mode switch. VIRG A TECH

Godmar Back Processes Part | 8/9 8/9

References

[1] Remzi H. Arpaci-Dusseau and Andrea C. Arpaci-Dusseau.
Operating Systems: Three Easy Pieces.
Arpaci-Dusseau Books, 1.00 edition, August 2018.

[2] Jack B. Dennis and Earl C. Van Horn.

Programming semantics for multiprogrammed computations.
Commun. ACM, 9(3):143-155, March 1966.

\/a

VIRGINIA TECH

Godmar Back Processes Part | 9/9 9/9

