
Processes (Part II)

Godmar Back

Virginia Tech

August 29, 2024

Godmar Back Processes Part II 1/10 1 / 10



Process States

OS’s keep track of the status of each process.

RUNNING:
This process is executing its instructions on a
CPU

READY:
This process is ready to execute on a CPU, but
currently is not (it is waiting for a CPU to be
assigned)

BLOCKED:
This process is not ready to execute on a CPU,
because it is waiting for some event
it cannot currently make use of a CPU even if
one is available

NB: in systems whose kernel supports
multi-threading, the states are maintained for
each thread separately.

Figure 1: Basic Process State Diagram

Godmar Back Processes Part II 2/10 2 / 10



Process State Transitions

RUNNING → BLOCKED: process cannot continue because
it first must wait for something, e.g.

for input (keystroke, file from disk, network message, data from
Unix pipe)
for exclusive access to a resource (acquire a lock)
for a signal from another thread/process
for time to pass (e.g., sleep(2) sys call)
for a child process to terminate

BLOCKED → READY: process becomes ready when that
something finally becomes available

OS adds process to a ready queue data structure

READY → RUNNING: process is chosen by the scheduler
only 1 process can be chosen per CPU
requires scheduling policy if demands exceeds supply

RUNNING → READY: process is descheduled
OS preempted the process to give another READY process a turn
or, rarely, process voluntarily yielded the CPU

Figure 2: Basic Process
State Diagram

Godmar Back Processes Part II 3/10 3 / 10



Discussion Questions

1 What happens if an n CPU system has exactly n READY processes?

2 What happens if an n CPU system has 0 READY processes?

3 What happens if an n CPU system has k < n READY processes?

4 What happens if an n CPU system has 2n READY processes?

5 What happens if an n CPU system has m� n READY processes?

6 What is a typical number of BLOCKED/READY/RUNNING processes in a
system (e.g. your phone or laptop?)

7 How does the code you write influence the proportion of time your program
spends in the READY/RUNNING state?

8 How can the number of processes in the READY/RUNNING state be used to
measure CPU demand?

9 Assuming the same functionality is achieved, is it better to write code that
causes a process to spend most of its time BLOCKED, or READY?

Godmar Back Processes Part II 4/10 4 / 10



Answers (in permuted order)

1 Prefer BLOCKED to READY because it does not consume CPU; use OS
facilities to wait for events rather than poll in a loop

2 150− 500 BLOCKED, and 0− 2 RUNNING

3 Every process takes about twice as long as it normally would

4 The load average is a weighted moving average of the size of the ready queue
(including RUNNING processes); it says how many CPUs could be kept busy

5 System becomes very laggy, processes take much longer than normal

6 n − k CPUs are idle, k CPUs run exactly 1 process

7 Each CPU runs exactly 1 process

8 Performing computation without performing I/O means the process is READY
at all times and will be RUNNING if scheduled.

9 The system is idle and goes into a low-power mode

Godmar Back Processes Part II 5/10 5 / 10



Process States in Linux and other OS

Our model is simplified, real OS often maintain state diagrams with 5-15 states
for their threads/tasks

Case study: Linux uses the following states:

Linux Process States
D uninterruptible sleep (usually IO)

I Idle kernel thread

R running or runnable (on run queue)

S interruptible sleep (waiting for an event to complete)

T stopped by job control signal

t stopped by debugger during the tracing

W paging (not valid since the 2.6.xx kernel)

X dead (should never be seen)

Z defunct ("zombie") process, terminated but not reaped by its parent

Thinking Question
Why does Linux not distinguish between RUNNING and READY?

Godmar Back Processes Part II 6/10 6 / 10



Process States and Job Control
Job control: Some
systems provide the
ability to stop
(suspend) a process
for some time, and
continue it later with
all its state intact.

E.g., in Linux Ctrl-Z

This mechanism is
separate from the
state transitions
caused by events
processes wait for –
events can still arrive
for stopped processes

Figure 3: Extended State Diagram including Job Control
(conceptually)

Godmar Back Processes Part II 7/10 7 / 10



Programmer’s View

Process state transitions are guided by decisions or events outside the
programmer’s control (user actions, user input, I/O events, interprocess
communication, synchronization) and/or decisions made by the OS (scheduling
decisions)

They may occur frequently, and over small time scales
e.g., on Linux preemption may occur every 4ms for RUNNING processes
when processes interact on shared resources (locks, pipes) they may frequently
block/unblock)

For all practical purposes, these transitions, and the resulting execution order,
are unpredictable

The resulting concurrency requires that programmers not make any assumptions
about the order in which processes execute; rather, they must use signaling and
synchronization facilities to coordinate any process interactions

Godmar Back Processes Part II 8/10 8 / 10



Mini Glossary

A number of English verbs and gerunds are used with the respect to processes and
job control that sometimes have an non-intuitive and/or context-dependent meaning

running can mean
(laymen, informal): a running process is one that has been started but hasn’t finished.
(more precise OS terminology): a process that is currently in the RUNNING state, making
progress and consuming CPU time in the process

stopping a process in Unix means to momentarily suspend it (independent of
whether it’s RUNNING, READY, or BLOCKED). Does not terminate the process - the
process can be resumed (“continued”) later.

interrupting a process (usually with Ctrl-C) typically, by default, terminates
(ends) the process (but not always). It does not suspend it. It is not related to
(hardware) interrupts.

killing a process means to send a signal to it, which often, but not always,
terminates it.

Godmar Back Processes Part II 9/10 9 / 10



References

Godmar Back Processes Part II 10/10 10 / 10


