
Unix Signals

Godmar Back

Virginia Tech

September 27, 2024

Godmar Back Unix Signals 1/10 1 / 10



Unix Signals

Unix Signals present a uniform mechanism that allows the kernel to inform
processes of events of interest from a small predefined set (< 32)

Traditionally represented by their integer number, sometimes associated with some optional
additional information

These events fall into 2 groups
1 Synchronous: caused by something the process did (aka “internally generated event”)
2 Asynchronous: not related to what the process currently does (aka “externally generated

event”)

Uniform API includes provisions for programs to determine actions to be taken
for signals, which include

terminating the process, optionally with core dump
ignoring the signal
invoking a user-defined handler
stopping the process (in the job control sense)
continuing the process

Sensible default actions support user control and fail-stop
behavior when faults occur

Godmar Back Unix Signals 2/10 2 / 10



Signals Representing Synchronous Conditions

SIGILL (1) Illegal Instruction

SIGABRT (1) Program called abort()

SIGFPE (1) Floating Point Exception (e.g. integer division by zero, but not
usually IEEE 754 division by 0.0)

SIGSEGV (1) Segmentation Fault - catch all for memory and privilege violations

SIGPIPE (1) Broken Pipe - attempt to write to a closed pipe

SIGTTIN (2) Terminal input - attempt to read from terminal while in background

SIGTTOU (2) Terminal output - attempt to write to terminal while in background

(1) Default action: terminate the process
(2) Default action: stop the process

Godmar Back Unix Signals 3/10 3 / 10



Selected Signals Representing Asynchronous Notifications

SIGINT (1, 3) Interrupt: user typed Ctrl-C

SIGQUIT (1, 3) Interrupt: user typed Ctrl-\
SIGTERM (3) User typed kill pid (default)

SIGKILL (2, 3) User typed kill -9 pid (urgent)

SIGALRM (1, 3) An alarm timer went off (alarm(2))

SIGCHLD (1) A child process terminated or was stopped

SIGTSTP (1) Terminal stop: user typed Ctrl-Z

SIGSTOP (2) User typed kill -STOP pid

(1) These are sent by the kernel, e.g., terminal device driver
(2) SIGKILL and SIGSTOP cannot be caught or ignored
(3) Default action: terminate the process

Godmar Back Unix Signals 4/10 4 / 10



How Signals Work

First, a signal is sent (via the kernel) to a target process
Some signals are sent internally by the kernel (e.g. SIGALRM, SIGINT, SIGCHLD)
User processes can use the kill(2) system call to send signals to each other (subject to
permission)
The kill(1) command or your shell’s built-in kill command do just that.
raise(3) sends a signal to the current process

This action makes the signal become “pending”

Then (possibly some time later) the target process receives the signal and
performs the action (ignore, terminate, or call handler).

Aside: the details of how processes learn about pending signals and how they
react to them are complicated, but handled by the kernel

Here we focus on what user programmers need to observe when using signals

Godmar Back Unix Signals 5/10 5 / 10



Signals Don’t Queue

Each signal represents a bit in the target process’s pending mask saying whether
the signal has been sent (but not yet received)

Thus, sending a signal that’s already pending has no effect

This applies to internally triggered signals as well: notably, multiple children that
terminate while SIGCHLD is pending will result in a single delivery of SIGCHLD

More like railway signals (on/off) than individual messages

Godmar Back Unix Signals 6/10 6 / 10



Control Flow (asynchronous notification)

user mode

kernel mode

handler

regular program

signal delivered
Signal handler returns
(see sigreturn(2) for details)

Kernels resumes 
regular program

Figure 1: If a user-defined signal handler is set, it may interrupt the current program at any point.
After the execution and return of the handler, the original program continues.

Godmar Back Unix Signals 7/10 7 / 10



Control Flow Example

void

list_insert (struct list_elem *before,

struct list_elem *elem)

{

elem->prev = before->prev;

elem->next = before;

before->prev->next = elem;

before->prev = elem;

}

list_insert:

movq (%rdi), %rax

movq %rdi, 8(%rsi)

movq %rax, (%rsi)

movq %rsi, 8(%rax)

movq %rsi, (%rdi)

ret

If a signal arrives in the middle of list insert(), the manipulated list’s list
element are in a partially linked state. If the signal handler now takes a path where
the same list is being accessed (iterated over, etc.), inconsistent behavior will result.
This situation must be avoided.

Godmar Back Unix Signals 8/10 8 / 10



Async-Signal Safety

Is it safe to manipulate data from a signal handler while that same data is being
manipulated by the program that was executing (and interrupted) when the
signal was delivered?

In general, is it safe to call a function from a signal handler while that same
function was executing when the signal was delivered?

Answer: it depends.

POSIX defines a list of functions for which it is safe, so-called async-signal-safe
functions, see signal-safety(7) for a list and the book’s Web Aside: Async-signal
Safety

printf() is not async-signal-safe (acquires the console lock)

Two strategies to write async-signal-safe programs:
1 don’t call async-signal-unsafe function in a signal handler
2 block signals while calling unsafe functions in the main control flow (or when

manipulating shared data)

Godmar Back Unix Signals 9/10 9 / 10

http://csapp.cs.cmu.edu/public/waside/waside-safety.pdf
http://csapp.cs.cmu.edu/public/waside/waside-safety.pdf


Blocking/Masking Signals

user mode

kernel mode

handler

block(SIGNAL)

signal sent
Signal handler returns
sigreturn()

unblock(SIGNAL)signal pending

Protected Section Unprotected Section

Figure 2: Programs can block signals to prevent their delivery during inopportune times. Blocked
signals that become pending will be delivered when unblocked.

Trade-Off

If signals are masked/blocked most of the time in the main program, signal handlers can call most functions, but

signal delivery may be delayed. If a signal is not masked most of the time, signal handlers must be very carefully

implemented. In practice, coarse-grained solutions are perfectly acceptable unless there is a requirement that

bounds the maximum allowed latency in which to react to a signal. Side note: OS face the same trade-off when

implementing (hardware) interrupt handlers.

Godmar Back Unix Signals 10/10 10 / 10


